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Abstract: The real-time wear of evaluation tools occurs for 
many reasons. The cutting process monitoring system is a 
tool that allows catastrophic tool wear to be eliminated. 
Based on multisensor systems, methods are created based 
on multiple monitoring models. In addition, the rapid 
development of artificial intelligence (AI) allows for the 
more effective application of these methods to predict the 
state of tool wear. In the presented work, the first stage of 
research concerns the application of neural networks to the 
possibility of predicting tool wear condition based on 
various input data such as: cutting forces, acoustic 
emission and mechanical vibrations. The second stage of 
the research concerns the development of models for the 
classification of the cutting edge’s acceptability status, and 
a blunt cutting edge providing an example of mechanical 
vibrations. Measurements of selected physical quantities 
were carried out during the turning of hardened steel with 
constant cutting parameters. 
Key words: artificial neural networks, effectiveness, 
diagnostic measures, prediction, classification, tool 
condition keywords. 
 
1. INTRODUCTION 
 
Nowadays, many methods are used that allow tool 
wear to be evaluated in real-time. The cutting process 
monitoring system is a tool that allows catastrophic 
tool wear to be eliminated. One of the newer methods 
used to monitor the condition of tool wear is the 
empirical method of EMD (Empirical Mode 
Decomposition), which is based on the 
decomposition of signals in the time domain. It was 
included in the paper (Shi et al., 2018), where it was 
used in the detection of the cracking of the tool based 
on the measurement of cutting forces. In addition, 
various algorithms are created which, using video 
systems, allow tool wear analysis to be performed 
(Zhang and Zhang, 2013). Large use in machining 
also allows indirect monitoring of tool wear based on 
cutting forces, the evaluation of chip morphology, 
mechanical vibrations and acoustic emission. In the 
work (Olufayo and Abou-El-Hossein, 2015), acoustic 
emission signals were used to diagnose ceramic 
inserts during milling at high speed cutting, where a 

multi-sensor system for classifying the wear of the 
tool in use was also used. Very often, cutting forces 
(Liu and Jolley, 2015; Wang et al., 2013) are used to 
diagnose the condition of the tool, and neural 
networks (Felusiak and Twardowski, 2018) are used 
for diagnostic inference. In addition to neural 
networks, wavelet transformation and spectral 
grouping algorithms are also used for diagnostic 
inference (Aghazadeh, 2018). An extensive overview 
of the applied wedge monitoring methods can be 
found in (Zhou and Xue, 2018). Many publications 
confirm that machining forces are the most sensitive 
to changes in tool wear. However, their industrial 
application involves constructional intervention of 
machine tools or causes restrictions in the working 
space. These limits are not only related to vibration 
and acoustic emission sensors that are easy to 
assemble and do not interfere with the design of the 
machine tools. Therefore, diagnostic methods based 
on vibration measurement and acoustic emissions are 
constantly being developed. One of the newer 
solutions is the use of multisensors due to the fact 
that different sensors are more correlated with 
subsequent stages of tool wear. This solution gives a 
full picture of the potential wear. After receiving the 
raw signals, signal processing and feature extraction 
methods are used, i.e. time domain analysis using 
autoregressive AR models, moving average MA 
models or ARMA mixed models, methods based on 
frequency domain analysis, wavelet transformation 
and the EMD empirical method. Based on 
multisensor systems, methods are being created based 
on multiple monitoring models (Das et al., 2018). In 
addition, the rapid development of artificial 
intelligence (AI) and advanced methods of inference 
allow for the more effective application of these 
methods to predict the state of tool wear (Khorasani 
and Yazadi, 2017; Kong et al., 2017; Savkovic et al., 
2017; Varol and Ozsahin, 2017; Zhu and Liu, 2018).   
The presented work concerns the application of 
artificial neural networks to the possibility of 
predicting the tool wear condition based on various 
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input data such as: cutting forces, acoustic emission, 
and mechanical vibrations. Measurements of selected 
physical quantities were carried out during the turning 
of hardened steel with constant cutting parameters. 
 
2. EXPERIMENTAL SET-UP 
 
The tests were carried out during the turning of 
100Cr6 (61 HRC) hardened steel. The tool material 
was MC2 oxide ceramics (Al2O3+TiN), in the form 
of mechanically fastened inserts (SNGN120408). The 
tests were carried out on a TUR560E lathe with 
constant turning parameters: cutting speed 
vc=180m/min, feed f= 0.08mm/rev and cutting depth 
ap= 0.1mm.  
After each pass (length of the shaft L= 150mm) the 
flank wear VBc (the width of the flank wear on the 
tool cutting edge) was measured by means of a 
workshop microscope with a resolution of 0.01mm.  
During turning, the values of the forces, (Fc(Fx), 
Ff(Fy) and Fp(Fz)), the acceleration of the vibrations 
in three directions (Ac(Ax), Af (Ay) and Ap(Az)) and the 
acoustic emission (by the broadband sensor and a 150 
kHz resonance sensor) were measured. Figure 1 
presents a simplified diagram of the measurement 
path, which takes into account the location of the 
sensors and additional components necessary for 
signal processing and analysis. Measurement of the 
forces, vibrations and acoustic emission was based on 
sensors using the piezoelectric effect. 
 

 
Fig. 1. Diagram of the measuring set-up used during the 

turning of hardened steel 
 
To measure the components of the cutting forces, a 
piezoelectric sensor was used, which was placed on 
the lathe slide. As a diagnostic measure, the 
maximum, minimum and mean square values were 
selected. The vibration was measured using a three-
component piezoelectric vibration acceleration 
sensor. 
Digital signals were sent to the computer on the basis 
of which the mean square RMS values were 
determined for the tested quantities - equation (1): 
The time intervals for which RMS values were 
determined were 4s and the obtained measures have 
been correlated with the corresponding tool wear 

values. 
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Where: MRMS - mean square value for any diagnostic 
measure.  
 
15 repetitions were performed, i.e. under the same 
conditions, the wear process was carried out for 15 
tool cutting edges. For each cutting edge, the testing 
was continued until the wear value VBc≈ 0.4mm was 
reached. The following blunt criterion has been 
adopted: VBc= 0.3mm. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Influence of tool wear on diagnostic measures 
Figure 2 shows the relationship between the tool wear 
indicator VBc and the cutting time ts for all 15 cutting 
edges. To determine the dependence, the type of 
function was selected: VBc= ats

3+bts
2+cts, 3rd degree 

polynomial, as the most representative for the tool 
wear process. This function reflects in the best way, 
the results obtained, and the coefficient R2= 0.98, 
which indicates a high fitting to the selected 
mathematical function. 
 

VBc = 7E-06ts3 - 0.0005ts2 + 0.0207ts
R² = 0.98
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Fig. 2. Tool wear VBc as a function of time ts including all 

tests carried out 
 
From the graph, it can be seen that the assumed 
dulling criterion VBc= 0.3mm is reached for 
ts≈25min. This criterion was selected on the basis of 
previous experience related to the machining of 
hardened steels. Above this value, the probability of 
chipping of the ceramic cutters increases 
significantly, due to, among others, an increase in the 
level of vibration amplitudes.  
The next step was to recognise the relationship 
between tool wear and designated measures of 
diagnostic signals. Figure 3 shows an example of the 
dependence of the maximum Fp value as a function of 
tool wear VBc. This dependence is described by the 



 

198 
 

linear function Fp_max= aVBc+b and the coefficient 
R2=0.8. For all other diagnostic measures (i.e. Fi_max, 
Fi_min, Fi_RMS), the best results were also obtained for 
the linear function. 
The relationship between vibration and acoustic 
emission in the function of tool wear looks different 
(Figures 4 and 5). In these cases, the exponential 
function was chosen to assess the correlation of 
vibrations and acoustic emission with the tool wear, 
for which R2 was the largest. 
 

Fp_max = 1423.5 VBc + 40.3
R² = 0.80

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Fp
_m

ax
[N

]

VBc [mm]

100Cr6 (61 HRC) - MC2
vc = 180 m/min
f = 0.08 mm/rev
ap = 0.1 mm

 
Fig. 3. Resistance component Fp_max in the function of tool 

wear VBc 
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Fig. 4. Vibrations in the feed direction Af_RMS as a function 

of tool wear VBc 
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Fig. 5. Acoustic emission EA_RMS as a function of tool 

wear VBc 
 
Figures 4 and 5 show only examples of measures, and 
ultimately analysed: 
 

cutting forces  
 Fp_min – minimum value of thrust force, 
 Fp_max – maximum value of thrust force, 
 Ff_min – minimum value of feed force, 
 Ff_max – maximum value of feed force, 
 Fc_min - minimum value of cutting force, 
 Fc_max – maximum value of cutting force. 
vibration 
 af 0-10kHz - RMS value of vibrations in the feed 

direction in the 0 - 10kHz band, 
 af 0-2kHz - RMS value of vibrations in the feed 

direction in the 0 - 2kHz band, 
 af 2-4kHz - RMS value of vibrations in the feed 

direction in the 2 - 4kHz band, 
 af 5-8kHz - RMS value of vibrations in the feed 

direction in the 5 - 8kHz band, 
 ap 0-10kHz - RMS value of vibrations in the 

thrust direction in the 0 - 10kHz band, 
 ap 0-2kHz - RMS value of vibrations in the thrust 

direction in the 0 - 2kHz band, 
 ap 2-4kHz - RMS value of vibrations in the thrust 

direction in the 2 - 4kHz band, 
 ap 5-8kHz - RMS value of vibrations in the thrust 

direction in the 5 - 8kHz band. 
acoustic emission 
 k1 10-100kHz, - RMS value for the broadband 

sensor in the 10 - 100kHz band, 
 k1 100-200kHz - RMS value for the broadband 

sensor in the 100 - 200kHz band, 
 k1 10-500kHz - RMS value for the broadband 

sensor in the 10 - 500kHz band, 
 k1 k - RMS value for the broadband sensor in the 

10 - 1000kHz band, 
 k2 10-100kHz - RMS value for the resonance 

sensor in the 10 - 100kHz band, 
 k2 100-200kHz - RMS value for the resonance 

sensor in the 100 - 200kHz band, 
 k2 10-500kHz - RMS value for the resonance 

sensor in the 10 - 500kHz band, 
 k2 k - RMS value for the resonance sensor in the 

10 - 1000kHz band. 
 
3.2 Diagnostic inference 
The main purpose of diagnostics of the tool’s 
condition is to determine its degree of wear based on 
the measured physical quantities. At the same time, a 
different approach to this issue can be applied. In 
industrial practice, the determination of two states, 
being acceptable and unacceptable (i.e. that the tool 
should be replaced with a new one), is usually applied. 
For this purpose, a permissible tool wear value must be 
defined - the dullness criterion. In this work, the 
following relations have been adopted: VBc <0.3mm – 
acceptable tool condition, VBc ≥0.3mm - blunt tool. 
Figures 6 and 7 show the two distinct tool conditions 
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discussed for two exemplary force measures. The 
separation of the two areas, i.e. “acceptable tool 
condition” and “a blunt tool”, is the task of a 
monitoring system working on the basis of various 
mathematical algorithms. 
However, a two-step evaluation of the tool condition is 
not always sufficient. Often, the point is to evaluate 
what the condition of the tool will be in the next cycle, 
and if necessary, withdraw it before exceeding the 
allowable wear limit. In this situation, we are dealing 
with prediction. A valid mathematical model for 
prediction is used to assess the state of the tool at any 
time. The simplest model is the one-variable regression 
equation shown, for example, in Figures 8 and 9.  
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Fig. 6. Two tool conditions for Fp_max and Fc_max 
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Fig. 7. Two tool conditions for Ff_max and Ff_min 
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Fig. 8. An example of a one-variable model for Fp_max type: 

y = ax +b 
 

VBc = 0.0991ln(Af_RMS) + 0.32
R² = 0.87
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Fig. 9. An example of a one-variable model for Af_RMS type: 

y = aln(x) +b 
 

In the case of force components, a linear relationship 
of the type: y= ax+b, or VBc= aFi+b, is best suited 
for assessing tool wear. In such a situation, it is 
enough to substitute the appropriate value of the force 
component and read the value of the wear indicator. 
The same applies to measurements based on vibration 
signals or acoustic emission. The only difference is 
that in this case, the best suited dependence is the 
logarithmic function of the type: y= a∙ln(x)+b, i.e. 
VBc= a∙ln(Ai)+b, or VBc=a∙ln (EAi)+b. 
A one-variable regression model has the basic 
disadvantage of being imprecise. The natural 
dispersion of experimental results means that the 
predicted values are not precise and are sometimes 
characterised by a large error. Therefore, it is better to 
use multi-variable models or artificial intelligence 
algorithms, such as, neural networks. 
 
3.3 Neural networks to evaluate the effectiveness 
of various diagnostic measures of cutting-edge 
status 
At the stage of data preparation, the individual 
parameters used for the assessment were defined. 
Using the reinforced trees method, the importance 
(rank) of individual parameters was determined. This 
validity was examined for selected measures: cutting 
forces, vibrations, acoustic emission and all measures 
together. Figure 10 shows the charts of the 
importance of the individual parameters for 
individual measures. The maximum validity is 1. 
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Fig. 10. Validity of measurement parameters: cutting force, 
vibration and acoustic emission 
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For the purpose of creating models of neural 
networks, the input parameters were normalised and 
coded. This was dictated by the diversity of ranges of 
individual parameters, and in the case of some 
artificial intelligence methods (e.g. neural networks), 
such range differences would cause the input data 
with a larger range to have an excessive effect on the 
results. In neural networks, the functions of neuron 
transition do not specify requirements as to the range 
of input values, and they generate output values 
belonging to a strictly defined range. At the 
boundaries of this range in the neuron characteristic, 
there is a “saturation” effect, which means that in 
fact, the input values should also belong to a limited 
range. The limited range of possible network 
responses in connection with the requirement to use 
only data in numerical form requires the use of a pre-
processing step before input to the network input 
(preprocessing the input data) and the process of 
transforming and interpreting the output data received 
from the network (postprocessing the results) 
(Tadeusiewicz et al., 2014). 
There are many options to perform the mentioned 
transformations of input and output data: for 
example, the external numerical values can be scaled 
to a range suitable for the network. In typical cases, 
the raw data is scaled in a linear manner. In these 
studies, min-max normalisation was applied. It is 
based on checking how much the field value is 
greater than the minimum value (X), and then scaling 
this difference by the range - equation (2): 
 

 
)min()max(

)min(

XX
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Data coding 
The second categories of data are nominal data, 
which may be two- or multi-state, e.g. the tool cutting 
edge condition parameter has two states: an 
acceptable cutting edge, a blunt cutting edge. In the 
first stage of the research, one-of-N coding was 
chosen, which consists of using several numerical 
variables in the network structure instead of one 
nominal one. For example, for the wedge state 
parameter, the number of numeric variables is 2 and 
is equal to the number of possible values of the 
nominal variable: good wedge = {1,0}, blunted 
wedge = {0,1}. With such data coding, the number of 
network inputs and outputs increases. 
VBc tool wear detection was performed on the basis 
of the following measurements: cutting forces, 
vibrations and acoustic emission. Separate models of 
artificial neural networks were created for individual 
measures and for all together. Next, the results of the 
neural networks were compared to the actual values 
measured during the machining process. 

Multi-layer neural networks with backward error 
propagation (MLP) were used to build the models. 
 
3.4 Prediction of tool condition using neural 
networks for measures: cutting force, vibrations, 
acoustic emission 
Neural networks are a very good tool for forecasting 
and classification (Rojek, 2010, 2017).  
In order to obtain the most effective neural network 
models, the evaluation of the cutting edge was 
parameterised with different sizes. Table 1 shows the 
inputs and outputs of the neural networks for 
individual measures. 
The neural network model created on the basis of the 
measure of: 
cutting forces had 7 inputs (ts, Fp_min, Fp_max, Ff_min, 
Ff_max, Fc_min and Fc_max) and 1 output (VBc), 
vibration had 9 inputs (ts, af 0-10kHz, af 0-2kHz, af 
2-4kHz, af 5-8kHz, ap 0-10kHz, ap 0-2kHz, ap 2-
4kHz and ap 5-8kHz) and 1 output (VBc), 
acoustic emission had 9 inputs (ts, k1 10-100kHz, 
k1 100-200kHz, k1 10-500kHz, k1 k, k2 10-100kHz, 
k2 100-200kHz, k2 10-500kHz and k2 k) and 1 
output (VBc), 
total had 23 inputs (ts, Fp_min, Fp_max, Ff_min, Ff_max, 
Fc_min, Fc_max,, af 0-10kHz, af 0-2kHz, af 2-4kHz, af 5-
8kHz, ap 0-10kHz, ap 0-2kHz, ap 2-4kHz, ap 5-
8kHz, k1 10-100kHz, k1 100-200kHz, k1 10-
500kHz, k1 k, k2 10-100kHz, k2 100-200kHz, k2 10-
500kHz and k2 k) and 1 output (VBc). 
 
Table 1. Inputs and outputs of neural networks MLP 

Measures Input parameters NN Output 
parameter  

Cutting 
forces 

ts, Fp_min, Fp_max, Ff_min, 
Ff_max, Fc_min and Fc_max 

VBc 

Vibrations ts, af 0-10kHz, af 0-2kHz, 
af 2-4kHz, af 5-8kHz, ap 
0-10kHz, ap 0-2kHz, ap 2-
4kHz and ap 5-8kHz 

Acoustic 
emission 

ts, k1 10-100kHz, k1 100-
200kHz, k1 10-500kHz, k1 
k, k2 10-100kHz, k2 100-
200kHz, k2 10-500kHz 
and k2 k 

 
Figure 11 shows structure of the MLP neural network 
on the basis of measurement of cutting forces. 
The neural network models were built with one hidden 
layer, in which the number of neurons was changed 
experimentally (from 4 to 20). One of the most widely 
used learning algorithms, i.e. the BFGS algorithm 
(Broyden – Fletcher – Goldfarb - Shanno algorithm - 
MLP network learning algorithm) was used, in which 
the number of learning epochs was changed (from 10 
to 150). The SOS function (error function in the form 
of the sum of squared differences) was used as the 
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error function - equation (3). 
 

 
Fig. 11. Structure of MLP network on the basis of 

measurement of cutting forces 
 
Figure 12 shows the values of the SOS error function 
for the selected MLP neural networks for the cutting 
force measure. In addition, the activation function 
was changed in the hidden and output layers 
(functions: Linear, Logistic, Exponential, Tanh, 
Softmax). Table 2 shows the best neural networks for 
the individual diagnostic measures. 
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Where: N - number of examples (input / output pairs) 
used for learning, yi - network prediction (network 
output), ti - “real” value (output according to data) for 
the ith case. 
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Table 2. The best MLP network models for diagnostic 

measures 
NS E % ER BA AH AO DM 
7- 
8- 
1 

99 0.000065 94 Tanh Tanh Cutting 
forces 

9-11-
1 

99 0.000330 24 Tanh Logistic Vibrations 

9-10-
1 

99 0.000087 67 Tanh Logistic Acoustic 
emission 

23-
19-1 

99 0.000074 32 Logistic Tanh total 

Where: NS - NN Structure, E - Effectiveness, ER – Error, 
BA - BFGS Algorithm, AH - Activation function in the 
hidden layer, AO - Activation function in the output layer, 
DM - Diagnostic measure 

 
Worse efficiency results were obtained by networks 
with fewer neurons in the hidden layer (eg 4, 5), 
fewer learning epochs (eg 5, 20) or worse functions 
that were used as activation functions (e.g. linear). 
The estimation of neural network models was made on 
the basis of the correlation coefficient. The closer the 
correlation coefficient approaches 1, the better the model.  
For example, for the best neural network (MLP 9-10-
1) for acoustic emission, the correlation coefficient 
was determined by the values: learning - 0.992487, 
testing - 0.992186 and validation - 0.993731. 
However, for a slightly worse neural network (9-13-
1), the correlation coefficient was as follows: learning 
- 0.964746, testing - 0.970827 and validation - 
0.970501. Figure 12 presents R2 distribution graphs 
for the individual phases of creating a neural network 
model (learning, testing, validation) for acoustic 
emission for these two selected neural networks 
(MLP 9-10-1, MLP 9-13-1). 
Figure 13 clearly shows that during training, all 
experimental and predicted values almost perfectly 
matched the regression line, i.e. R2 = 0.992487 for 
MLP 9-10-1. This means that the network has been 
satisfactorily trained. When testing and validating the 
network, several experimental values are located a 
little further from the regression line. Therefore, the R2 
value becomes slightly less than 1 for the NN model.  
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Fig. 13. Evaluation of neural network models using the 

correlation coefficient 
 

The models of neural networks for new input data 
were also validated (Figure 14). Each time, 10 new 
real values were given to the input of the neural 
network. In response, the network reported results in 
the form of VBc values. Figure 14 compares the 
responses of neural networks with the real ones 
obtained from the experiment. 
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a)The result of the best network for cutting forces 
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b)The result of the best network for vibrations 
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c)The result of the best network for acoustic emission 
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d)The result of the best network for all measures 

together 
Fig. 14. Comparison of the operation of the best networks 

created for each diagnostic measure separately and 
together with the real values of VBc obtained from the 

experiment 
 
Figure 14 shows charts of the best models of neural 
networks for cutting forces, vibrations, acoustic 
emission and the graph, which was based on all 
measures together. All these neural networks have 
99% efficiency. These networks have been 
parameterised with various parameters to achieve the 
same best performance. When comparing the 
operation of neural networks for 10 new values of 
measurements with the actual values from the 
process, it was found that the most-similar graph of 
the network is the grid plot for acoustic emission and 
cutting forces. In two points, we see slightly larger 
discrepancies (for measurements 3 and 6 for acoustic 
emission, and for measurements 2 and 6 for cutting 
forces), and for the remaining measurement points, 
the results are very similar. Additional real 
measurements could be made to diagnose the cause 
of such a result for the neural networks. The worst 
divergent results were provided by the neural network 
for vibrations. 
 
3.5 Classification of wedge status using neural 
networks for vibrations 
The second stage of the research concerned the 
development of models for the classification of the 
cutting edge’s status as an acceptable or blunt cutting 
edge. This division results from the value of VBc. In 
this case, nominal values appeared next to the 
numerical data (acceptable cutting edge and blunt 
cutting edge). 
Neural network classification models are shown for 
the vibration measure. A training, testing and 
validation file was developed. Neural one-directional 
multilayer networks with backward error propagation 
(MLP) were also used to build classification models.  
In order to obtain models of neural networks with the 
best effectiveness of classification of cutting edges as 
good or blunt, they were parameterised with different 
values. 
The following values were given for the network 
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input: ts, af 0-10kHz, af 0-2kHz, af 2-4kHz, af 5-8kHz, 
ap 0-10kHz, ap 0-2kHz, ap 2-4kHz, af 5-8kHz and VBc. 
At the output of the network was the nominal value: 
cutting edge_condition. So the network had 10 inputs 
and 1 output. Networks with one hidden layer were 
built, in which the number of neurons from 4 to 25 was 
changed. One of the most widely used learning 
algorithms was used, i.e. the BFGS algorithm 
(Broyden-Fletcher-Goldfarb-Shanno algorithm), in 
which the number of learning epochs was changed 
(from 4 to 30). The SOS function (error function in the 
form of sum of squares of differences) and mutual 
Entropy was used as the error function. The error 
functions in the form of sum squares were originally 
used to solve regression problems. They are also used 
for classification, however a real neural classifier 
should have a different error function - Cross Entropy, 
which has the following form - equation (4): 
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It is assumed that the output variable is subjected to 
polynomial distribution, in contrast to the Sum of 
Squares, in which the output variable has a normal 
distribution. 
In addition, the activation function was changed in 
the hidden and output layers (functions: Linear, 
Logistic, Exponential, Tanh, Softmax).  

The most effective was the network with the structure 
10-8-1 (98.14% effectiveness), in which the Tanh 
function was used as an activation function in the 
hidden layer, and the Softmax function in the initial, 
with 6 as the number of learning epochs. Worse 
results of effectiveness were provided by the 
networks with fewer neurons in the hidden layer (e.g. 
5 neurons), fewer learning epochs (e.g. 4), or worse 
activation functions (e.g. linear). Table 3 presents the 
results of the 10-8-1 network classification. In 232 
cases, the classification of the acceptable cutting edge 
was poorly classified 7 times, while in the case of the 
blunted cutting edge, only 1 was wrongly classified in 
a range of 143 cases. 
 
Table 3. The results of the best network classification 
Cases Cutting edge 

condition-good 
Cutting edge 

condition-blunt 
Total 232 143 
Correct 225 142 
Incorrect 7 1 
Correct (%) 96.98 99.30 
Incorrect (%) 3.02 0.70 

 
The neural network models were validated with new 
input data. Of the 20 new datasets given for the MLP 
10-8-1 network entry, only one answer was wrong. 
Table 4 presents the comparison of the network 
response with the actual values from the experiment. 
 

 
     Table 4. Comparison of the network response with real values from the experiment 

Input parameters for vibrations (af – feed direction, ap - thrust direction) Cutting edge 

ts 
[min] 

 

af 
[m/s2] 
0-10 
kHz 

af 
[m/s2] 

0-2 
kHz 

af 
[m/s2] 

2-4 
kHz 

af 
[m/s2] 

5-8 
kHz 

ap  
[m/s2] 
0-10 
kHz 

ap 
[m/s2] 

0-2 
kHz 

ap 
[m/s2] 

2-4 
kHz 

ap 
[m/s2] 

5-8 
kHz 

VBc 
[mm] 

 

actual 
classification 
results 

network 
responses 
MLP 10-8-1 

13.50 0.2306 0.0700 0.0907 0.1953 0.2596 0.0577 0.0833 0.2364 0.20 good good 
15.00 0.2476 0.0717 0.0820 0.2169 0.2726 0.0552 0.0741 0.2535 0.21 good good 
16.50 0.3318 0.0684 0.1714 0.2558 0.3424 0.0589 0.1572 0.2901 0.23 good good 
18.00 0.3027 0.0740 0.1182 0.2587 0.3676 0.0876 0.1252 0.3221 0.25 good good 
19.50 0.2977 0.0692 0.0939 0.2676 0.3652 0.0771 0.1017 0.3331 0.27 good good 
21.00 0.4183 0.0738 0.1488 0.3705 0.4862 0.0721 0.1383 0.4502 0.28 good good 
22.50 0.6534 0.1091 0.1933 0.5897 0.7690 0.1110 0.1827 0.7207 0.30 blunt good 
24.00 2.6481 0.0882 0.1168 2.6186 3.1501 0.2602 0.2554 3.0943 0.33 blunt blunt 
25.50 0.9050 0.1068 0.1203 0.7419 1.0734 0.3523 0.1292 0.9536 0.33 blunt blunt 
27.00 0.8221 0.0970 0.2018 0.7390 0.7110 0.1902 0.1811 0.6254 0.33 blunt blunt 
28.50 1.2501 0.0918 0.1336 1.2281 0.8999 0.0725 0.1064 0.8852 0.35 blunt blunt 
30.00 2.1535 0.1695 0.1817 2.1032 1.8382 0.3952 0.1864 1.7637 0.36 blunt blunt 
31.50 0.6503 0.1019 0.1190 0.6208 0.8026 0.0790 0.1042 0.7852 0.37 blunt blunt 
33.00 1.5474 0.1020 0.1342 1.5268 1.8717 0.0828 0.1221 1.8597 0.39 blunt blunt 
34.50 0.8455 0.1076 0.1064 0.8241 0.7259 0.1529 0.1028 0.6926 0.40 blunt blunt 
36.00 3.9915 0.1776 0.1684 3.9752 4.7527 0.1161 0.1649 4.7391 0.41 blunt blunt 
37.50 2.8356 0.1640 0.1570 2.8217 3.8501 0.2054 0.2254 3.8284 0.41 blunt blunt 
1.50 0.3269 0.0824 0.0999 0.2524 0.3955 0.0995 0.1018 0.3233 0.02 good good 
3.00 0.1312 0.0725 0.0523 0.0931 0.1323 0.0570 0.0420 0.1093 0.05 good good 
4.50 0.1575 0.0681 0.0591 0.1254 0.1705 0.0561 0.0493 0.1507 0.08 good good 
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3.6 The use of developed models in the turning 
hardened steel process monitoring application  
The turning hardened steel process monitoring 
application uses both prediction and classification 
models. The prediction of tool condition is made 
by neural networks, which predict the tool wear 
indicator VBc on the base of measured cutting 
force, vibrations, and acoustic emission. Next, 
neural networks classify tools based on: blunt 
cutting edge vs. good cutting edge, and give 
information to the CNC machine operator. Figure 
15 shows application screens. The main of 
application is shown in Figure 15(a). Figure 15(b) 
shows VBc forecasting by the neural network 
based on the measured cutting force, and Figure 
15(c) shows the classification of the tool’s state. 
After entering the data, the neural network is 
started and we get the neural network output. 
 

a) Application menu 
 

 

b) VBc forecasting by neural network 
 

 
c) Classification of tool state 

Fig. 15. Examples of application screens 
 
4. CONCLUSIONS 
 
The conducted research showed the usefulness of 
MLP neural networks to evaluate the effectiveness of 
various diagnostic measures in the classification and 
prediction of the condition of a tool cutting edge 
during the turning of hardened steel. The neural 
networks used provide excellent opportunities to use 
the data obtained from the machining process. The 
predictive neural networks used to evaluate the 
effectiveness of various diagnostic measures showed 
that the best results were obtained for the measure of 
cutting forces and acoustic emission. When selecting 
of cutting force sensors, the greater structural 
interference of the machine tools or the limitations 
related to the working space should be taken into 
account. Therefore, it seems better to use acoustic 
emission sensors that do not have such limitations. 
Neural networks confirmed the effectiveness of a 
diagnostic measure in the form of acoustic emission 
to assess the condition of the cutting edge. Neural 
networks cope very well with problems of grading a 
tool’s condition as good and blunt. This is illustrated 
for the measure of vibration. 
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