
International Journal of Modern Manufacturing Technologies

 ISSN 2067–3604, Vol. XII, No. 1 / 2020

82

COMPUTATIONAL DESIGN AND DIGITAL MANUFACTURING

APPLICATIONS

Panagiotis Kyratsis

University of Western Macedonia, Department of Product and Systems Design Engineering, Kila Kozani, GR50100,

Greece

Corresponding author: Panagiotis Kyratsis, pkyratsis@uowm.gr

Abstract: Product design and manufacturing needs shorter

time to market and lower costs in order to increase the
resulted productivity. A series of tools and frameworks have

been developed in order to emphasize the use of modern CAD

systems in automating a number of design processes and

downstream applications. As a result, design engineers

increase their efficiency by learning to program CAD systems

and implement their ideas in an extremely effective way.

The present paper contributes towards the use of different

CAD systems based on their programming for designing and

manufacturing products. A number of case studies are

presented and prove the originality of the proposed

approach. SolidWorks™ and RhinoTM are used for this
purpose, together with their programming tools such as

Visual Basic for Applications (CAD based Application

Programming Interface) and Grasshopper (a graphical

algorithm editor tightly integrated with RhinoTM’s 3-D

modeling tools) respectively. Additionally, several CAD

based features are employed, such as the model feature

recognition, the object properties extraction and the

geometric topology interface. The presented case studies

include the development of a fully functioning application

for automatic generation of enginnering documents and

routine design tasks (e.g. selection of geometric topology)

that can be embedded to the user’s workstation. Moreover,
computer routines for the automatic generation of complex

and unique three-dimensional geometries and patterns used

in additive manufacturing processes are also included.

Finally, testing of the aforementioned case studies dictate

that the time conserved, when applying these strategies is

remarkable, hence the development of a product or a system

can overall be enhanced.

Key words: CAD, Computational Design, Application

Programming Interface, Automation

1. INTRODUCTION

Nowadays modern industries aim at automated product
design and manufacturing as much as possible. In

addition, the use of computer aided design and

manufacturing (CAD/CAM) systems is a must tool for

design engineers in the industry. Hence, the
implementation of application programming interface

(API) in routine tasks is a topic that draws the attention

of many researchers related to industry in the past few

years. The API provides the user with vast possibilities
that can lead to productivity enhancement via the

development of applications for engineering purposes.

Such applications can include the automatic operation
of various CAD features that can be embedded into a

user interface and modern tools, based on programming,

that provide innovative and parameter-driven design

solutions. In addition, the applications can include
interactions between software modules or a piece of

software and a programmable machine. Subsequently,

the main CAD-based tool for the automated generation
of innovative design solutions is computational design.

In computational design, geometry forms are shaped by

values of parameters and the relationships between
these forms are described by mathematical context.

Therefore, a large number of applications are created

and are based at the same time on mathematics and

programming resources.

2. LITERATURE SURVEY

2.1 CAD based use of APIs

Viganò and Osorio-Gómez (2012) defined an approach
to extract the liaison graph from a 3D CAD model and

analyze a method to find at least a feasible assembly

sequence at the early stage of the design process of a
product and by means of the database of the PDM/PLM

systems. The method could be useful to search the

optimal sequence of assembling for a product, by
comparing different sequences extracted in automatic

mode from a 3D CAD model. Xia et al. (2015)

proposed a software framework related to the unified

representation architecture (URA) that makes computer
aided design (CAD) and computer aided engineering

(CAE) to be an organic entity and contains three

components. The URA facilitates the incorporation by
explicitly representing design and analysis information

as design features, which maintains their associations

through the history chain. Moreover, they proposed a
unified mesh data (UMD) to unify the mesh of CAD

model display and CAE analysis with the purpose of

reducing the redundancy of mesh data. Chen et al.

(2017) proposed a CAD-LCA (Life Cycle Assessment)

83

software integration approach based on two types of

features: a) the Product Feature (PF) and b) the

Operation Feature (OF), for life cycle representation.
Authors developed a NX Unigraphics plug-in tool for

PF extraction. Additionally, they proposed a feature-

based LCA system prototype tool, which has the

capabilities of processing product feature models,
generating the life cycle process model based on

product-to-operation feature mapping and performing

life cycle inventory (LCI) and impact assessment. The
work of Ding et al. (2016) focused on developing a fully

automated system using robotic gas metal arc welding

to additively manufacture metal components. Authors
included a user-friendly interface so that operation of

their system by non-experts to be feasible.

García-Hernández et al. (2016) developed a software

application for measuring gears and described its
implementation using general-purpose spreadsheet

software. The communication between the

spreadsheet and the coordinate measuring machine
(CMM) software was established by ASCII files.

Tapoglou (2019) presented a novel simulation model,

embedded on a CAD environment that enables the
accurate prediction of the non-deformed chip

geometry, the form and dimensions of the chips

produced during the cutting process as well as the

characteristics of the gear gap. The work of Kyratsis
et al. (2019) dealt with the development of an

application, by using the API of a commercially used

CAD system. This application provides the user with
a simple and easy to use platform that can automate

the design process of a high-profile product by

considering many different design aspects.

Chatziparasidis and Sapidis (2017) presented a
solution method for knowledge-based engineering

(KBE)-CAD transformation problem by using two

product models: a) the schematic assembly model
(SAM) and b) the intermediate assembly model

(IAM). The SAM is designed to fully employ all sorts

of information available in the KBE system, and
incorporate that either in the list of 'SAM

components' or in the related 'SAM connection rules',

whereas the IAM translates this 'SAM model' into 3D

part models and assembly features, in a manner that
production of the final 3D mechanical-CAD model is

automatic. Hong et al. (2014) investigated a dynamic

assembly simplification approach in order to
demonstrate and interact with virtual assembly

process of complex product in real time. Authors

proposed a new assembly features definition to assist
the assembly features recognition, which is a main

step of the dynamic assembly simplification. Oancea

and Haba (2016) presented a new software tool,

specialized in rotational parts, which allows the user
to obtain the manufacturing sequences, cutting data

for each process from the manufacturing sequence

and finally to assist at the simulation of each process.

2.2 CAD based use of graphical algorithm editors

Computational design is the procedure of using

programing to create and modify form, structure, and
ornamentation. Furthermore, parametric modelling

allows immediate generation of large number of

design alternatives. Mitchell (1978) describe the term

Generative Design Systems as devices that are
capable of generating potential solutions for a given

problem. Computational and Generative Design

offers a number of benefits to CAD systems that can
extend traditional CAD-based design techniques.

According to Killian (2006) and Terzidis (2003)

computational design methodologies allow
automation of the design procedures and extension of

the standard features of CAD applications, therefore

overstepping their limitations. Applying these

limitations, Krause (2003) dealt with the development
of applications, by using the computational design

methods to generate structures or objects. This means

that, designers are able to program (textual
languages) or develop programs (visual

programming) that when executed, produce unique

geometric models. Leitão and Santos (2011)
categorize textual and visual programming languages

in terms of representation method, and describes

them, with examples of applications. Scripting

language offers large number of assets in
programming for CAD applications. Furthermore,

textual programming languages allow control within

a software (i.e. Python
TM

 commands and structures
joined with Rhino

TM
 via RhinoScriptSyntax module).

In addition, Green and Petre (1996) defined that

visual programming languages allow users to create

graphic-based programs rapidly, simple and more
flexible by using program icon-like elements rather

than by scripting code (i.e. Grasshopper
TM

 graphical

elements and routines join with Rhino
TM

).
Grasshopper

TM
 is described as a graphical algorithm

editor and it enables developing parametric designs

through visual programming. The numbers of designs
that are generated from Grasshopper

TM
 are digital

objects in Rhino
TM

. Especially, the representative

compound geometries of 3D objects are NURBS

surfaces. The RhinoScriptSyntax module contains
functions that perform a variety of operations on

Rhino
TM

. The library of functions is about geometry,

commands, document objects and application
methods. Certainly, all these functions are returned as

simple Python
TM

 variables due to the ease of design

processing. Kyratsis et al. (2019) dealt with the
development of procedures that identifies the digital

form design process in which computer simulation

software tool is used to generate forms in 3D space.

These parametric generative forms aim on designing
innovative objects (Tzintzi et al., 2017) for 3D

printing and laser cutting applications.

The current paper presents a number of case studies that
prove the value and the advantages that derive from the

84

implementation of the API and the programming

resources of CAD systems. Specifically, a programming

approach is being proposed related to the automatic
creation of the engineering documents for the

manufacturing of standard mechanical systems and to

the automatic feature creation.

Additionally, the computational design point of view
is introduced through illustrative case studies.

Designs based on RhinoScriptSyntax Module

(Python
TM

 and Rhino
TM

) and on Grasshopper
TM

application offer a variety of examples and features

as displayed in the present work.

3. DEVELOPMENT OF CASE STUDIES

3.1 Automating engineering documentations

Engineering documents may include drawings, process

plans and bill of materials (BOM). These documents
enable the manufacturing process of a product or a

system. The following case study presents the

opportunity to create a tool for automatic creation of
such documents with the aid of SolidWorks™ API

(Fradinho et al., 2015). Figure 1 illustrates the workflow

for the automated creation of the necessary documents.

Firstly, the already designed assembly of the mechanical
system opens in silent mode, so that the user may not be

disrupted. Moreover, all the components that comprise

the assembly open in silent mode too. Next, the default
information and the custom properties that the assembly

contains are extracted and then exported to a

spreadsheet (this action requires that Excel™ or similar

software is already installed). The type of information
and the number of properties that can be extracted

depend on the selection of the user. Typical properties

are the part number, the description, the material, the

weight, the quantity and the cost of a part. User may

choose which of the properties and attributes of the
model wants to include in the BOM and even add new

ones. Subsequently, a new drawing document opens.

All the pre-defined from the user options, such as the

paper size, the drawing standards and the memorandum,
are applied to the new document. At the same time, the

extracted data (e.g. the BOM) are placed on the

document at a pre-defined from the user position and
with a specified style. Finally, the standard 3-view

drawing of the first part in the assembly is placed on the

new document. With the use of a “For” loop, the same
procedure is performed for the rest of the assembly’s

components. Hence, depending on the number of the

components that the assembly contains, an equal

number of sheets are created. On top of that, a standard
3-view drawing of the assembly and a sectioned view

drawing are also created (Figure 1).

To open the assembly of the designed product and its
components the “OpenDoc6” method was

implemented. The usage of this method requires the

name and the type of the object to be opened. The mass
related properties of the assembly and each of the parts

can be extracted with the “CreateMassProperty”

method, whereas the custom properties such as the

material, weight, cost, etc. can be linked to a BOM and
at the same time saved to a file with the aid of

“InsertBomTable3” and “SaveAsText2” methods

respectively. The creation and the setup of the new
drawing document are achieved with the

“NewDocument” and the “SetupSheet6” methods.

Fig. 1. The workflow of the automatic document creation tool

85

User must define a template for the proper use of the

first method, whereas for the latter must specify a

number of options such as the sheet size, the scale,
the name of the sheet and the margins. Each new sheet

of the drawing document is created with the

“NewSheet4” method. The insertion of the defined

views of the model along with the annotations
(dimensions, symbols, etc.) is realized with the

“CreateDrawViewFromModelView3” and the

“InsertModelAnnotations3” methods accordingly. The
placement of the model views is pre-defined by

configuring three variables (Double) that represent the

three coordinates X, Y, Z of the placement location. The
insert of the annotations is performed based on the

chosen source of dimensions (e.g. a designed part) and

the type of annotations the user wishes to include in the

drawing. Finally, the “CreateAutoBalloonOptions”

method is required to create an array, where the

preferences for the balloons are stored. These preferences
are applied to the balloons, which are inserted to the

model of the drawing with the “AutoBalloon5”.

Table 1 contains the most important SolidWorks™

API methods that were used in order to develop the
aforementioned tool with the aid of Visual Basic™

for Applications (VBA) programming language. It is

possible that the syntax of the methods may differ
slightly depending on the SolidWorks™ version.

It is concluded, that the presented tool can lead to

short developing times of a product and may increase
the productivity of design engineers, since they are

relieved of time-consuming routine tasks and are free

to focus on more creative assignments.

Table 1. Basic API methods for the automatic document creation

Method Usage

OpenDoc6 Opens an existing document

CreateMassProperty
Obtains mass property information about one or more solid

bodies in the document

InsertBomTable3 Inserts a BOM table in a part or assembly document

SaveAsText2 Saves a table to a text data file

NewDocument Creates a new document based on a specified template

SetupSheet6 Sets up the specified drawing sheet

NewSheet4 Creates a new drawing sheet in the current drawing document

CreateDrawViewFromModelView3
Creates a drawing view on the current drawing sheet using the

specified model view

InsertModelAnnotations3
Inserts model annotations into the current drawing document in

the currently selected drawing view

CreateAutoBalloonOptions Creates an object that stores auto balloon options

AutoBalloon5 Automatically inserts BOM balloons in selected drawing views

3.2 Automating topology selection

Almost every design task performed with a CAD

system requires the selection of certain topology objects
such as a vertex, an edge or a surface. In this case study,

a tool with a user interface (Figure 2, Kyratsis et al.,

2011) is being presented for automatic creation of
standard design features based on topology selection.

The user interface makes possible the input of values

and the selection of different options, thus is the mean
for the interconnection between the user and the

software (Kyratsis et al., 2018; Tzotzis et al., 2017).

Fig. 2. The tool’s interface

First step during the operation of this tool is the

connection to an open model document (e.g. a part

document) so that access to the solid bodies of the
model can be achieved. Next, with the

implementation of a “For” loop, the tool “searches”

for the specified topology entity (face or edge) based
on the user’s preference. Upon finding all the model’s

faces or edges, the default ID of each one of them are

changed according to the pre-defined prefix plus an
ascending number as suffix. For example, if a part

model contains twelve faces then they will be

renamed to Face-1, Face-2, Face-3, …, Face-11 and

Face-12 respectively. The renamed faces along with
their new IDs are then stored to an array, which can

be accessed by the tool’s code. Finally, the topology

object, which corresponds to the defined name is
selected and the appropriate operation (hole, fillet or

chamfer creation) is performed depending on the

user’s selection (Figure 2).
Optionally, the selected face or edge can be

highlighted with the use of colour; this is particularly

helpful, when working on a large assembly with

many components. The hole feature corresponds to
the selected face, whereas the fillet/chamfer feature

corresponds to the selected edge. Figure 3 illustrates

86

the steps followed for automatically creating standard

CAD based features on a selected topology object.

The “ActiveDoc” API method is required to make
feasible the connection between the model document,

that is currently open with the API objects. In case

there is no document active, the user will be

prompted to open one. Prior to the naming procedure,
the tool must gain access to the solid bodies that are

present in the model. This can be achieved with the

“GetBodies2” method. For the retrieval of the faces
and the edges, the “GetFaces” and the “GetEdges”

methods are used accordingly. A “For” loop is

utilized in order to retrieve each of the faces and
edges in the solid bodies and create an array. With the

same loop, the naming procedure of the topology

objects takes place. The used method is the

“SetEntityName” and the name is formed with a user

specified prefix and an arithmetic suffix that is

generated by a counter. Subsequently, the selection

procedure is realized with the “GetEntityByName”
and the “Select4” methods. Depending on the name

of the topology object that the user wishes to process,

the retrieval of the specified object is done with the

“GetEntityByName” method, whereas the selection is
performed with the “Select4” method. The term

selection corresponds to the fact, that the selected

object is marked as it would, when the user moves the
pointer to that object and clicks. Finally, the methods

“InsertFeatureChamfer” and “FeatureFillet3” are

responsible for the creation of a chamfer or a fillet
feature respectively, on the selected topology object.

The usage of these methods requires the set of a

number of parameters, such as the radius and the type

of fillet, the width, the angle and the type of chamfer.

Fig. 3. The workflow of the automatic feature creation tool

The method that gets the options (RGB values) for the

highlight function is the “GetMaterialPropertyValues2”,

whereas the method that applies the colour effect on the
selected object is the “SetMaterialPropertyValues2”.

Most of the SolidWokrs™ API methods that were used

in the presented tool and their usage are included in

Table 2. This case study demonstrates the possibilities

that derive from the employment of the API and the

CAD based programming resources. Concluding, the
presented tool can aid design engineers to generate

product designs in a faster and a more efficient way.

Table 2. Basic API methods for the automatic feature creation

Method Usage
ActiveDoc Connects to the currently active document
GetBodies2 Gain access to the bodies in the currently active part

GetFaces Gets all the faces on the body
GetEdges Gets the edges for the selected body
SetEntityName Sets the name of the entity
GetEntityByName Gets an entity (face, edge, vertex) by name

Select4 Selects an entity and marks it
GetMaterialPropertyValues2 Gets the material property values for the selected entity
SetMaterialPropertyValues2 Sets the material property values for the selected entity

InsertFeatureChamfer Inserts a chamfer
FeatureFillet3 Creates the specified fillet feature for selected edges or faces

FeatureCut4 Creates a cut extrude feature

87

3.3 Computation design and textual programming

Every textual programming language follows three

important principles: a) primitive elements, b)
combination mechanisms, and c) abstraction

mechanisms. Furthermore, textual programming

languages are described using a linear sequence of

characters (Findler et al., 2002). Τhe contribution
between textual programming languages and CAD

pieces of software, offers users a great number of

benefits, when creating compound geometries and
structures.

The next case study presents an application for

automatic creation of such unique 3D geometries
with the aid of Python

TM
 (textual programming

language) and Rhino™ (CAD software). Figure 4

illustrates the workflow for the automated creation

of 3D geometries. First, the user creates two
different types of objects by using Rhino™ tools:

a free form surface and two planes (A) and (B). At

first, all dimensions of these elements are up to the
users’ choice. The designed surface is the one that

will be cut (by the two planes) on the

corresponding flat layers. Afterwards, the user is
able to insert specific numerical values for the

parameters required by the command line. The

combination of parameters that the user chooses,

results in building the final form of the 3D
structure. The parameters used are:

 Step (number of cuts from Plane A and Plane B on

the surface),

 Count (number of final surface layers)

 Extrude (layers’ thickness) and

 Offset.

The proposed procedure was developed in Python
TM

programming language by importing

rhinoscriptsyntax module to the Rhino
TM

 software.

Some of the commands used for the script are
presented in Table 3.

Figure 5 depicts the second stage of the complete

procedure and presents four alternative designs for

the same surface. This emphasises the development
of a complete family of geometries.

In more details:

 When the selected values are: Step=5,

Count=20, Extrude=2 and Offset=0.2, the

result of the produced structure (A) is a dense
grid.

 Next, the user inserts new values, thus a new

structure is created. The main characteristic is

that the new structure (B) is thinner than the

first one. The values for the second geometry
are: Step=8, Count=20, Extrude=1 and

Offset=1.

 Structure (C) is the thinnest structure from the

four examples, because of the new set of values
selected (Step=10, Count=20, Extrude=4 and

Offset=0.2).

 Finally, structure (D) is characterised by the

most high-density grid of all alternatives. The
values for the last example are: Step=2,

Count=80, Extrude=1 and Offset=0.1.

Likewise, the user can insert new values and the

proposed application can build alternative styles of
the basic structure. The suggested example is based

on laser CNC cutting techniques – in order to

create wooden structures for architectural and
product design purposes. According to Kolarevich

(2001), CNC cutting or 2D fabrication, is one of

the most used fabrication techniques. Laser-cutters
use a high-intensity focused beam of infrared light

in combination with a jet of highly pressurized gas

(carbon dioxide) to melt or burn the material that is

being cut. The alternative types of structures that
are proposed from current application are different

kind of prototypes with an aim to explore

aesthetics and technical characteristics from the
designers’ point of view. It is concluded that the

presented application can lead to a holistic tool that

allow architects, mechanical engineers, product
designers and artists to create different types of

structures by using appropriate parameters and

basic geometries.

Table 3. Basic script commands used for the computational design application

Command Usage

GetObject Inserts Plane A, Plane B, Surface

GetReal Inserts values for Step

GetInteger Inserts values for Count

ExtrudeCurveStraight Inserts values for Extrude

OffsetSurface Inserts values for Offset

MoveObject Moves Plane A and Plane B

IntersectBreps Creates segments

88

Fig. 4. The workflow of CAD application based on computational design and textual programming

Fig. 5. A case study of CAD application based on computational design and textual programming

3.4 Computation design and visual programming

Myers (1990) focused on a term of visual
programming language (VPL) that allows the

description of programs in a bidimensional represen-

tation consisting of iconic elements that can be inter-

actively manipulated by the user according to some
spacial grammar. The proposed framework for

exploration of design alternatives can be seen in

89

Figure 6. A parametric model is developed using

Grasshopper™, which is a plugin for Rhino™. The

most popular tool for the Rhino™ design community,
in order to create models that are based on

computational design principles, is Grasshopper™.

Computational design is the action of using a visual

programing language with an aim to create and
modify form, structure, and ornamentation. Some of

the benefits offered are: the precision, the automation,

the generativity, the randomness and the
parameterization achieved.

The following case study presents an application for

automatic creation of such unique 3D patterns with the
aid of Grasshopper

TM
 (visual programming language)

and Rhino
TM

 (CAD software). Figure 6 illustrates the

workflow for the automated creation of 3D patterns for

3D printing applications. At the first stage of the
presented workflow, designer is able to create a series

of Construct Points, using the Grasshopper
TM

 visual

elements. Two kinds of parameters define the
command “Series”: the Step (N) and the Count (C).

The second stage includes all these commands that are

necessary to count all points and the distances between
them. Then these pieces of data are saved into a list. A

command that allows sorting a list from the minimum

to maximum number (or the opposite) is used for the

construction of the “construct points” pattern.
Following that, the user chooses a shape that will be

the main geometry reproduced to the pattern

morphology. The proposed shape for this case study is

polygon. The final stage includes all commands from

Grasshopper
TM

 that give to polygons a 3D entity.

Especially, the “Extrude” command, “Cup Holes” and
“ReMap” command are used. The final result is a 3D

pattern consisting of polygons.

As previously mentioned, at the second stage a list of

X and Y coordinates of all of Construct Points was
created. The specific list sorts points to the pattern

morphology by the MIN/MAX parameter. Figure 7

presents that the user can change the parameters of X
and Y coordinates, and as a result to transform the

final pattern of 3D polygons. Two differentiated

styles of pattern (A) and (B) are proposed. The
parameters used for patterns (A) and (B) are: X-

Coordinate=30, Y-Coordinate=10 and X-

Coordinate=70, Y-Coordinate=74, respectively.

Furthermore, Figure 7 illustrates a proposal for an
application. Especially, the suggested example is based

on the principle that 3D printing technologies will be

used, in order to create plastic structures for
architectural and product design purposes. It is

concluded that the presented application can lead to

another holistic tool, based on visual programming
language (VPL), that allow the user to create different

types of patterns by using only visual elements and

parameters in a graphic interface. The advantage of the

proposed procedure is the automatic creation of
alternative patterns, thus building a family of

geometries.

Fig. 6. The workflow of CAD application based on computational design and visual programming

90

Fig. 7. A case study of CAD application based on computational design and visual programming

4. CONCLUSIONS

In the present work, an effort was made to present

and discuss the possibilities that emerge through the

CAD based programming and highlight the
advantages that derive from the development of

programs related to the automation of multiple design

applications. Specifically, the implementation of the
API and the programming resources of SolidWorks™

and Rhino™ CAD systems are being demonstrated

via four case studies. The first two case studies deal

with the automatic creation of engineering documents
and the development of an interactive tool that can

support common routine design tasks. On the other

hand, the last two case studies are related to the
automated procedure of creating complicated and

unique 3D geometries and to the development of 3D

patterns for 3D printing applications.

Upon finalizing the aforementioned case studies, the
following conclusions can be deducted: a) the

programming of CAD systems can be used to

develop simple supportive macros and even complete
applications, b) it is possible to develop application

tools that embed a user-friendly interface for better

visualization of various procedures and for
establishing an interconnectivity between different

pieces of software, c) most of the standard design

tasks can be automated, hence reduce the

development time of products and systems d)

complex geometries and patterns can be simplified

for use with additive manufacturing or 2D CNC laser
cut-and-engraving operations.

Furthermore, such programming techniques can help

design engineers to increase their productivity and
allocate work time in a more efficient manner.

Additionally, the value of these techniques increases,

when the developed programs and tools provide
assistance to processes where a great number of

parameters is involved (e.g. simplification of

complex surfaces with multiple planes and vertices

for rapid and reliable 3D printing).

5. REFERENCES

1. Chatziparasidis I. and Sapidis N., (2017).
Framework to automate mechanical-system design

using multiple product-models and assembly feature

technology, Int. J. Prod. Lifecycle Manag., 10(2),
124-150

2. Chen Z., Tao J., and Yu S., (2017). A Feature-

based CAD-LCA Software Integration Approach for

Eco-design, Procedia CIRP, 61, 721–726
3. Ding D., Shen C., Pan Z., Cuiuri D., Li H., Larkin

N. and Van Duin S., (2016). Towards an automated

robotic arc-welding-based additive manufacturing
system from CAD to finished part, Comput. Des., 73,

66–75

4. Findler R. B., Clements J., Flanagan C., Flatt M.,

91

Krishnamurthi S., Steckler P., and Felleisen M.,

(2002). DrScheme: A programming environment for

Scheme, J. Funct. Program., 12(2), 159–182
5. García-Hernández C., Gella-Marín R., Huertas-

Talón J. L., and Berges-Muro L., (2016). Algorithm

for measuring gears implemented with general-

purpose spreadsheet software, Measurement, 85, 1–
12

6. Green T. R. G., Petre M., (1996). Usability

Analysis of Visual Programming Environments: a
Cognitive Dimensions Framework, J. Vis. Lang. and

Comp., 7(2), 131–174

7. Hong X., Yuan L., Jian-Feng Y., and Hui C.,
(2014). Dynamic assembly simplification for virtual

assembly process of complex product, Assem.

Autom., 34(1), 1–15

8. Killian A., (2006). Design innovation through
constraint modeling, Int. J. Arch. Comp., 4(1), 87–

105

9. Kolarevich, B., (2001). Digital Fabrication:
Manufacturing Architecture in Information Age,

Reinventing the Discourse - How Digital Tools Help

Bridge and Transform Research, Education and
Practice in Architecture, Proceedings of the Twenty

First Annual Conference of the Association for

Computer-Aided Design in Architecture, pp. 268 –

278,
10. Krause J., (2003). Reflections: The Creative

Process of Generative Design in Architecture,

Proceedings of the 6th international conference on
generative art, 136-149

11. Kyratsis P., Tapoglou N., Bilalis N., Antoniadis

A., (2011). Thrust force prediction of twist drill tools

using a 3D CAD system application programming
interface, Int. J. Mach.Mach., 10(1/2), 18-33.

12. Kyratsis P., Tzotzis A., Tzetzis D., and Sapidis

N., (2018). Pneumatic cylinder design using cad-
based programming, Acad. J. Manuf. Eng., 16(2),

107–113

13. Kyratsis P., Gabis E., Tzotzis A., Tzetzis D., and
Kakoulis K., (2019) CAD based product design: A

case study, Int. J. Mod. Manuf. Technol., 11(3) 88–93

14. Kyratsis P., Manavis, A., Gianniotis, P. and

Ghiculescu, D., (2019). A non-Conventional
methodology for interior product design using

conceptual principles and parametric tools,

Nonconventional Technologies Review, 23(4), 16-21
15. Leitão A. and Santos L. (2011). Programming

Languages for Generative Design: Visual or

Textual?, 29th eCAADe Conference Proceedings,
549-557

16. Mitchell W. J., (1978). The theoretical foundation

of computer-aided architectural design,

Environ.Plan., 2(2), 127–150
17. Myers, B.A., (1990). Taxonomies of Visual

Programming and Program Visualization, Vis. Lang.

and Comp., 1(1), 97 – 123
18. Oancea G. and Haba S. A., (2016). Software Tool

Used in CAPP/CAM Systems for Rotational Parts,

Sci. Bull. Ser. C Fascicle Mech. Tribol. Mach.

Manuf. Technol., 30, 75-78
19. Tapoglou N., (2019). Calculation of non-

deformed chip and gear geometry in power skiving

using a CAD-based simulation, Int. J. Adv. Manuf.

Technol., 100(5–8), 1779–1785
20. Terzidis, K., (2003). Expressive form: A

conceptual approach to computational design, (New

York, USA: Spon Press)
21. Tzintzi V., Manavis A., Efkolidis N., Dimopoulos

C., Kakoulis K. and Kyratsis P., (2017). Conceptual

design of jewellery: a space-based aesthetics
approach, in MATEC Web of Conferences 112 p.

07025 doi: 10.1051/matecconf/201711207025

22. Tzotzis A., García-Hernández C., Huertas-Talón

J. L., Tzetzis D., and Kyratsis P., (2017). Engineering
applications using CAD based application

programming interface, in MATEC Web of

Conferences, 94, p. 7
23. Viganò R. and Osorio-Gómez G., (2012).

Assembly planning with automated retrieval of

assembly sequences from CAD model information,
Assem. Autom., 32(4), 347–360

24. J Fradinho, D Nedelcu, A Gabriel-Santos, A

Gonçalves-Coelho, A Mourão, (2015). Some trends

and proposals for the inclusion of sustainability in
the design of manufacturing process, IOP conference

series: Materials science and engineering 95(1),

012142
25. Xia Z., Wang Q., Wang Y. and Yu C., (2015). A

CAD/CAE incorporate software framework using a

unified representation architecture, Adv. Eng.

Softw., 87, 68-85

Received: March 13, 2020 / Accepted: June 15,

2020 / Paper available online: June 20, 2020 ©
International Journal of Modern Manufacturing

Technologies

javascript:void(0)
javascript:void(0)
javascript:void(0)

