
International Journal of Modern Manufacturing Technologies

 ISSN 2067–3604, Special Issue, Vol. XIII, No. 3 / 2021

 https://doi.org/10.54684/ijmmt.2021.13.3.177

177

CAD-BASED AUTOMATED G-CODE GENERATION FOR DRILLING

OPERATIONS

Anastasios Tzotzis, Athanasios Manavis, Nikolaos Efkolidis, Panagiotis Kyratsis

University of Western Macedonia, Department of Product and Systems Design Engineering, Kila Kozani, GR50100, Greece

Corresponding author: Anastasios Tzotzis, tzotzis.tasos@gmail.com

Abstract: The automated generation of G-code for

machining processes is a valuable tool at the hands of every

engineer and machinist. Nowadays, many software systems

exist that provide automated functions related to G-code

generation. Most free software require the import of a

Drawing Exchange Format (DXF) file and cannot work

directly on a 3D part. On the contrast, the equivalent

commercially-available software systems are feature-rich

and can provide a variety of automated processes, but are

usually highly priced. The presented application aims to

supplement the existing free Computer Aided

Manufacturing (CAM) systems by providing a way of

generating G-code for drilling operations, using already

owned commercial 3D Computer Aided Design (CAD)

systems such as SolidWorksTM. Thus, in the case of 3D part

drilling, a standard 3D CAD system is sufficient since the

code can be adopted by most modern CAD software with

minor changes. Moreover, no specialized CAM software is

required. In order to achieve this automation, the

Application Programming Interface (API) of SolidWorks™

2018 was utilized, which allows for the design of visualized

User Interfaces (UI) and the development of code under the

Visual Basic for Applications (VBA™) programming

language. The available API methods are employed to

recognize the features that were used to design the part, as

well as extract the geometric parameters of each of these

features. In addition, an embedded calculator automatically

defines the cutting conditions (cutting speed, feed and tool)

based on the user selections. Finally, the application

generates the Computer Numerical Control (CNC) code for

the summary of the discovered holes according to the

standardized G-code commands; the output can be a typical

TXT or NC file that can be easily converted to the

preference of the user if necessary.

Key words: CAD, Application Programming Interface, VBA,

Drilling, G-code

1. INTRODUCTION

Nowadays, modern Computer Aided Design (CAD)

systems include advanced features and capabilities

that can be used to facilitate procedures and tasks that

otherwise would require dedicated software systems

in order to be carried out. Example tasks are the

generation of the G-code for machining, as well as the

simulation of the tool path. Implementation of the

Application Programming Interface (API) of CAD

systems allows for the development of macros and

applications that can fulfill the aforementioned roles.

Moreover, the API provides the user with tools that

can lead to efficient working schemas. In the past

years, researchers have utilized CAD systems to

perform various tasks without the need of specialized

software and to carry out investigations on multiple

areas with the aid of CAD-based strategies and

techniques. Indicative applications of the CAD-based

programming include the automated operation of

various design procedures, which in most cases can be

embedded into a User Interface (UI), the interaction

between different software modules and

programmable machines, as well as the simulation of

engineering problems.

Vijayaraghavan and Dornfeld [1] presented a method

to create accurate models of two-flute standard drills

using solid-modeling techniques and Boolean

operations to mimic the manufacturing process of

drills. The accuracy of the drills generated by this

method have been used in Finite Element (FE)

simulations. Similarly, Tzotzis et al. [2] described an

application that can be used to generate CAD models

of standardized turning inserts. The development was

178

achieved with the aid of the SolidWorks™ API and

the Visual Basic for Applications (VBA™)

programming language, by utilizing a parametric-

based design technique. Moreover, the generated tools

were easily converted to FE-ready file formats. By

using similar strategies, Kim et al. [3] proposed a

design process for end mills. The design procedure is

based on the solid model of the designed cutter along

with the computation of the cutter’s geometry, wheel

geometry, and wheel positioning data. The cutting

simulation method is used to obtain the machined

shape of an end mill by using Boolean operations

between the grinding wheel and the cylindrical

workpiece. CAD-assisted approaches were employed

by Kyratsis et al. [4] in order to build simple and easy

to use tools, that can eliminate repeatable and time-

consuming design tasks. Specifically, their work deals

with the development of an applet intended for the

automated design process of a bicycle. Works that

have implemented similar methodologies and

techniques, related to the automated design process of

products and systems, are available in the literature

[5–7]. Oancea and Haba [8] presented a new software

tool which allows the user to obtain multiple

information such as the manufacturing sequences,

cutting conditions for each process from the

manufacturing sequence and finally to assist the

simulation procedures. Viganò and Osorio-Gómez [9]

defined an approach to extract the liaison graph from

a 3D CAD model and analyze a method to find the

feasible assembly sequences during the stage of the

design process of a product based on attributes and

parameters of the graph. The employment of CAD-

assisted approaches was used for measuring

simulations as well in the work of García-Hernández

et al. [10]. Authors presented the geometrical and

mathematical principles necessary to develop a

software application for measuring gears, by utilizing

spreadsheet applications and CAD-based simulations

of the measuring operation. The aforementioned

technique allows for the calculation of the probe

positions, as well as the direction of measurement.

Another topic where CAD programming resources

have been successfully used is the measurement of the

produced machining forces and other machining

parameters such as surface roughness [11–13].

Tapoglou and Antoniadis [14] presented the HOB3D

code, intended for simulating the complex movements

involved in gear hobbing. The simulation is achieved

by embedding the developed algorithm in a

commercially-available CAD system environment.

According to authors, the code can calculate and

export the total generated machining forces as well as

the cutting forces in every cutting edge. In a similar

manner, Kyratsis et al. [15] presented the DRILL3D

tool, which can be used to calculate the thrust force of

both the cutting areas of the tool simultaneously.

The present paper proposes an alternative way of

generating CNC codes for drilling, based on CAD

system programming. The aim of the present research

is to develop an application with features found on

CAM systems, with the aid of a commercially-available

CAD software.

2. DEVELOPMENT OF THE APPLICATION

2.1 User Interface design

The User Interface (UI) was designed with simplicity

and ease-of-use in mind. In order to achieve the

aforementioned traits, the embedded toolbox of

SolidWorks™ 2018 API was utilized. The form is

divided into two sections; the first one “Cutting

Conditions” contains two textboxes that allow the

input of the cutting speed and feed value

respectively. The measurement units for the cutting

speed and feed are m/min and mm/rev accordingly.

In addition, one listbox was added that acts as a pull-

down menu for the user to select a material group. A

colored text informs the user for each one of the

material groups based on the ISO. For example, blue

color (ISO P) represents the Steel group of materials.

Specifically, the ISO P group includes non-alloy

steels, low-alloy steels, high-alloy steels, cast steels

and stainless steels (ferritic/martensitic). The cutting

conditions section includes a checkbox also, which

when checked enables the automated selection of the

cutting conditions, bypassing the default or any user-

selected values. This is achieved by scanning for the

material of the part that is open in SolidWorks™ and

checking the material group in which it belongs. The

cutting conditions then are automatically set

according to standardized values that derive from

well-known cutting-tool manufacturers’

recommendations.

Figure 1 illustrates the UI of the application along with

the input fields and command buttons.

179

Fig. 1. User Interface (UI) of the developed application

The second section of the application, namely Code, is

used for the generation of the drilling G-code. This

section contains one textbox and one listbox, the

listbox is intended for the code preview, whereas the

textbox is used for the input of the code file saving

path. The code preview windows provides a first glance

at the code. Two additional checkboxes are used to

allow the user to select whether the file is saved as

TXT, NC file format or both. Either way, the files are

editable and changes can be made if necessary. Finally,

two command buttons are included for the machining

information generation and the code generation

respectively. When the first button “Generate

Machining Info” is pressed, a procedure that scans for

hole features initiates and creates attributes on each of

the found holes. The second one “Generate CNC

Code”, is used to generate the G-code based on the

found holes and their attributes, as well as the set

cutting conditions.

2.2 Workflow of the application

The code of the application is divided into two parts;

creation of the attribute definitions and generation of the

G-code. The complete process is illustrated in Figure 2

with the form of a workflow. The first part begins with the

declaration of the necessary variables such as the cutting

speed, the feed, the hole and drill diameters, the hole

depth, the workpiece material group, the attribute

parameters and finally the topology objects. Next, these

variables are linked with the process options that can be

accessed by the user via the UI. For example, the textbox

entitled “f”, which is used by the user to input the feed

value, is linked to the corresponding variable, namely

feed, so that the process can take place. The next step is

the access of the open document. In the case that no part

document is open, a message window appears prompting

the user to open one. Part documents must contain holes

generated either by a dedicated hole feature or by an

extruded cut feature. Upon accessing the part document,

the creation of the attribute definitions is realized for the

next parameters: cutting speed, feed, position in X axis,

position in Y axis, position in Z axis, hole depth and hole

diameter. Consequently, the traversal of the solid bodies

that are available in an open document is performed, in

order to find the cylindrical surfaces of the holes. Next,

the information of each cylindrical surface found is

assigned to an attribute and then an instance of each

attribute is being created. In addition, the parameter values

for each attribute are set and an equivalent callout for each

attribute is created, so that can be displayed as soon as the

“Generate Machining Info” button is pressed. The first six

steps of the workflow comprise the first part of the code.

The second part of the code begins with a feature

traversal on the part [16], searching for the defined

attributes. Next, the parameter values (cutting speed,

feed, position in X axis, position in Y axis, position in

Z axis, hole depth and hole diameter) of the found

attributes are extracted. Finally, the CNC code is

formatted and added to the listbox for review.

Moreover, it is generated according to the used cutting

conditions and stored as TXT or NC file depending on

the user selection. The CNC code can be generated

with the “Generate CNC Code” button. Besides the

generation and storage of the CNC code, the listbox

intended for the preview of the code is also filled by

pressing the “Generate CNC Code” button. For this

purpose, the appropriate G and M commands are used,

such as the “G00” and the “M30” commands, which

are required for the rapid positioning of the tool and for

the end of the program respectively. The last three steps

are the ones that comprise the second part of the code.

180

Fig. 2. Workflow of the application

2.3 Coding procedure

The code of the application is divided into two sub

procedures according to the functions of the application

[17,18]. Each of these procedures is called as soon as the

corresponding button (“Generate Machining Info” and

“Generate CNC Code”) is pressed in the UI. The

procedures are structured according to the syntax norms

of the VBA™ programming language. Moreover, the

appropriate methods of SolidWorks™ API are used.

While the “DefineAttribute” method is used to create an

attribute definition, the “AddParameter” method is used to

add the feed, the cutting speed, the X position, the Y

position and the Z position of the hole center, as well as

the depth and the hole diameter to the created attribute

definitions. In order to traverse the solid bodies that are

available in the part document, a “For” loop is utilized. At

first, a collection is created that can store the found

cylindrical surfaces of the part. The “GetBodies2” method

is used to get the bodies that are available in the part and

the traversal of the bodies is carried out with the aid of the

loop. The “GetFirstFace” method is called with the

execution of the loop so that the first face of the solid

body can be found. Next, the “GetSurface” method is

required to get the surface in the case it is a cylinder,

whereas the “CylinderParams” is used to gather the

information of the current surface. Upon finalizing the

information gathering process, the “CreateInstance5”

method is utilized to create an instance of the attribute

described in the userform's activate handler. In addition, to

set each parameter value of the attribute using the

information from the cylindrical surface, the

“GetParameter” method is required, whereas to set the

values of the parameters the “SetDoubleValue2”.

Consequently, to display to the user which faces got

attributes, the “CreateCallout2” method is used. Thus,

when pressing the “Generate Machining Info” button, the

according callout objects are created on the part with the

aid of the “CreateSelectData” method. Finally, to allow

the code to be executed for all other faces that are

available on the model, the “GetNextFace” method is

employed, which gets the next face in the solid body.

Most of the SolidWorks™ API methods that were used

for the first part of the code and their function are included

in Table 1.

181

Table 1. Basic API methods for the solid body traversal and definition of the attributes

Method Function

DefineAttribute Creates an attribute definition

AddParameter
Adds a parameter to the attribute definition using the specified

name and default value

GetBodies2 Gets the bodies in this part

GetFirstFace Finds the first face in a body and returns the face

GetSurface Gets the surface referenced by this face

CylinderParams Gets the parameters of a cylindrical surface

CreateInstance5
Creates an instance of this attribute on the specified object with

the specified options

GetParameter Gets the specified parameter on this attribute

SetDoubleValue2
Sets the double or integer value of a named configuration option

parameter

CreateCallout2 Creates a callout for the selection

CreateSelectData Creates a ISelectData object to use as argument with Select

methods GetNextFace Gets the next face in a body

The second part of the code does a feature traversal and

searches for all the attributes on the open model. Once

an attribute is found, its values are obtained and then a

CNC drilling program is formatted according to the

data stored in the attributes parameters. For the feature

traversal, a “For” loop is utilized as well. The

“FirstFeature” method is the one that is responsible to

get the first feature that is available in the model,

whereas the “GetSpecificFeature2” method is used to

get the interface of the current feature as long as it is an

attribute. The “GetParameter” method is used in a

similar manner as in the first part of the code. The

purpose of this method is to get the specified

parameters (feed, cutting speed, X position, Y position,

Z position, hole depth and diameter) of an attribute. To

fill the lines of the preview listbox with the G-code and

to get an attribute value of type Double, the “AddItem”

and the “GetDoubleValue” methods are used

respectively. Finally, with the “GetNextFeature”

method it is possible to get the next feature in the part

document, so that it can be checked whether it is an

attribute or not. In the case that the user enables the

automatic selection of the cutting conditions, the

“GetMaterialPropertyName2” method must be utilized

in order to obtain the material name that is applied on

the workpiece part. To realize the automatic process of

the cutting conditions selection is realized via a control

structure with the “Select Case” statement, which is

discussed in the next paragraph. Table 2 contains the

aforementioned API methods used for the realization of

the feature traversal and the CNC code generation.

Table 2. Basic API methods for the feature traversal and the G-code generation

Method Function

FirstFeature Gets the first feature in the document

GetSpecificFeature2 Gets the interface for this feature

GetMaterialPropertyName2
Gets the names of the material database and the material for the

specified configuration

AddItem Adds the specified advanced component selection criterion to

the list GetDoubleValue Gets an attribute value of type double

GetNextFeature Gets the next feature in the part

To enable the automatic selection of the cutting

conditions, user can check the corresponding checkbox

that is intended for this purpose. Once the CNC code

generation process begins with this function enabled,

the feed and the cutting conditions are selected based

on the material of the workpiece model and according

182

to the recommendations of well-known tool

manufacturers that are available in their catalogues. To

realize this process, the algorithm that is illustrated in

Figure 3 is utilized. In the case that the user chooses to

use custom values for feed and cutting speed, the

corresponding textboxes are used; these are the

“f.TextBox” and the “V.TextBox” respectively. In

contrast, when the “CB.CheckBox” value is set to true,

the “GetMaterialPropertyName2” API method is

utilized in order to obtain the material that is applied to

the workpiece. Consequently, a control structure is

performed, checking the material group in which the

obtained material of the workpiece belongs. According

to the catalogues, six groups exist; the ISO P, the ISO

M, the ISO K, the ISO N, the ISO S and the ISO H that

represent Steels, Stainless Steels, Cast Irons, Non-

Ferrous materials, High Temperature alloys and

Hardened materials respectively. The aforementioned

structure is carried out with the “Select Case”

statement, which runs one of multiple groups of

statements, depending on the value of an expression. In

this case, depending on the material group that the

obtained workpiece material belongs, the values of the

variables that represent feed and cutting speed change

according to the set values of feed and cutting speed for

that material group. The material groups along with

their materials are stacked into an array, namely “mat”.

Due to the large number of material groups and

materials combinations, the use of arrays is imperative.

Fig. 3. Selection algorithm for cutting conditions

2.4 Testing procedure

The full process for a sample workpiece is depicted in

Figure 4. First of all, a part document must be open in the

environment of SolidWorks™, which must be

parametrically designed. It is possible to use models that

are designed with another CAD system besides

SolidWorks™, as long as the models are saved in file

formats that retain the used features and can be recognized

during the feature recognition process without faults.

Usually, hole features are easily recognized since are

common features and do not have any particular

complexity. Example file formats are the vendor-neutral

Initial Graphics Exchange Specification (IGES) and the

native for Parasolid geometrical kernel. Furthermore, the

model should be designed in such a way so that the upper

face of the workpiece is the default Front Plane in

SolidWorks™. With this design, the direction of each

hole’s depth matches the direction of the workpiece’s

extrusion. Additionally, Z axis becomes collinear to the

axis that passes through the center of each hole. Figure

4(a) illustrates a sample workpiece that was designed in

SolidWorks™ and is fully parametric. By pressing the

“Generate Machining Info” button, the attribute

definitions are set with the procedure that is presented in

section 2.3 and the equivalent callouts are created for the

user to take notice. Figure 4(b) illustrates the created

callouts for the sample model. It is noted that the code

searches for all cylindrical surfaces that are available in

the model. Next, it picks the ones that are related to a hole

feature or an extruded-cut feature and finally, creates the

callouts. User may use the callouts to preview the

positioning of the holes on a face, as well as to check their

depth and diameter. Moreover, the application is able to

work with cylindrical surfaces that exist on side faces of

the workpiece also. This means that the generated G-code

can be used with robotic drilling systems with minor

changes in the format of the code. Next, by pressing the

“Generate CNC Code” button (Figure 1), the full G-code

for the drilling process of the found holes is formatted and

generated according to the selected feed and cutting

speed, in addition to the parameters obtained from the

model. Figure 4(c) shows the preview window where the

code is listed. This way, user can preview the code and

check for any obvious faults. In order to further verify the

code and check its integrity, user can copy and paste the

code to a path simulator. Since some path simulators are

available for use online and without charge, it is easy and

fast to perform the code verification. Finally, Figure 4(d)

illustrates the saved text file that contains the G-code for

the specific workpiece.

183

Fig. 4. Example G-code creation for drilling of steel plate

3. CONCLUSIONS

In the present work, the development of a CAD-based

application is being demonstrated for the automated

CNC code generation for drilling processes, which was

realized with the implementation of the API and the

programming resources of SolidWorks™ CAD system.

The application can be divided into two sections; one

that is related to the automated creation of attributes,

resulting in the generation of the machining

information and another that deals with the automated

formatting and generation of editable drilling G-code,

optimized for CNC machines. The realization of both

parts is based on the traversal of the solid bodies that

are available in the part document by means of API

programming. The resources used in this research are

the SolidWorks™ API and the VBA™ programming

language, which allow for the efficient design of

customized applications, without the need for installing

specialized software packages.

Upon finalizing and testing the application, the

following conclusions can be deducted:

The developed application provides an alternative way

to generate CNC codes for drilling via a commercially-

available CAD system, without the need of costly

dedicated CAM software. It is possible to generate the

G-code directly from a 3D part without the need to

convert the model to 2D. The generated code is editable

and can be imported to most freeware or commercially-

available CAM systems for advanced editing.

Moreover, it is possible to import the codes to

simulation software for verification purposes. Finally, it

is possible to extend the application, enabling it to

generate CNC codes for more machining processes

such as milling or even robotic-assisted manufacturing.

184

Furthermore, it is highlighted that the programming of

CAD systems allows for the development of simple

macros to complete applications. Moreover, most of the

standard CAD-based tasks can be automated, which

can lead to reduced development times and production

costs of products and systems, hence engineers and

machinists can increase their productivity and allocate

their time more efficiently.

4. REFERENCES

1. Vijayaraghavan, A.; Dornfeld, D.A., (2007),
Automated Drill Modeling for Drilling Process

Simulation. J. Comput. Inf. Sci. Eng., 7, 276–282,

doi:10.1115/1.2768091.
2. Tzotzis, A.; Garcia-Hernandez, C.; Talón, J.L.H.;

Kyratsis, P. (2020), CAD-Based Automated Design of

FEA-Ready Cutting Tools, J. Manuf. Mater. Process., 4,

1–14, doi.org/10.3390/jmmp4040104.
3. Kim, J.; Park, J.; Ko, T.J.(2008), End mill design

and machining via cutting simulation. Comput. Des.,

40, 324–333, doi:10.1016/j.cad.2007.11.005.
4. Kyratsis, P.; Gabis, E.; Tzotzis, A.; Tzetzis, D.;

Kakoulis, K. (2019), CAD based product design: A

case study. Int. J. Mod. Manuf. Technol., 11, 88–93.
5. Kyratsis, P.; Tzotzis, A.; Tzetzis, D.; Sapidis, N.

(2018), Pneumatic cylinder design using cad-based

programming. Acad. J. Manuf. Eng., 16, 107–113.

6. Mok, H.-S.; Kim, C.-H.; Kim, C.-B. (2011),
Automation of mold designs with the reuse of standard

parts. Expert Syst. Appl., 38, 12537–12547,

doi:https://doi.org/10.1016/j.eswa.2011.04.040.
7. Tzivelekis, C.A.; Yiotis, L.S.; Fountas, N.A.;

Krimpenis, A.A. (2015), Parametrically automated 3D

design and manufacturing for spiral-type free-form

models in an interactive CAD/CAM environment. Int. J.
Interact. Des. Manuf., 11, 223–232,

doi:10.1007/s12008-015-0261-8.

8. Oancea, G.; Haba, S.-A. (2016), Software Tool Used
in CAPP/CAM Systems for Rotational Parts. Sci. Bull.

Ser. C Fascicle Mech. Tribol. Mach. Manuf. Technol.,

30.
9. Roberto, V.; Osorio-Gómez, G. (2012), Assembly

planning with automated retrieval of assembly

sequences from CAD model information. Assem.

Autom., 32, 347–360, doi:10.1108/01445151211262410.
10. García-Hernández, C.; Gella-Marín, R.; Huertas-

Talón, J.L.; Berges-Muro, L. (2016), Algorithm for

measuring gears implemented with general-purpose
spreadsheet software. Measurement, 85, 1–12,

doi:https://doi.org/10.1016/j.measurement.2016.02.013.

11. Wang, L.; Chen, Z.C. (2014), A new

CAD/CAM/CAE integration approach to predicting
tool deflection of end mills. Int. J. Adv. Manuf.

Technol., 72, 1677–1686, doi:10.1007/s00170-014-

5760-4.

12. Vakondios, D.G.; Kyratsis, P. (2020), An
innovative CAD - based simulation of ball - end milling

in microscale. Adv. Comput. Des., 5, 13–34,

doi:10.12989/acd.2020.5.1.013.
13. Dimitriou, V.; Vidakis, N.; Antoniadis, A. (2007),

Advanced computer aided design simulation of gear

hobbing by means of three-dimensional kinematics
modeling., J. Manuf. Sci. Eng. Trans. ASME, 129,

911–918, doi:10.1115/1.2738947.

14. Tapoglou, N.; Antoniadis, A. (2012), CAD-Based

Calculation of Cutting Force Components in Gear
Hobbing. J. Manuf. Sci. Eng., 134, 1–8,

doi:10.1115/1.4006553.

15. Kyratsis, P.; Bilalis, N.; Antoniadis, A. (2011),
CAD-based simulations and design of experiments for

determining thrust force in drilling operations.

Comput. Des., 43, 1879–1890,
doi:https://doi.org/10.1016/j.cad.2011.06.002.

16. Kyratsis, P.; Tzotzis, A.; Manavis, A. (2021),

Computational Design and Digital Fabrication. In

Proceedings of the Advances in Manufacturing
Systems; Kumar, S., Rajurkar, K.P., Eds.; Springer

Singapore: Singapore, pp. 1–16.

17. Tzotzis, A.; Garcia-Hernandez, C.; Huertas-Talon,
J.-L.; Tzetzis, D.; Kyratsis, P. (2017), Engineering

applications using CAD based application

programming interface. In Proceedings of the MATEC

Web of Conferences; 94, pp. 1–7.
18. Kyratsis, P. (2020), Computational design and

digital manufacturing applications. Int. J. Mod. Manuf.

Technol., 12, 82–91.

Received: April 06, 2021 / Accepted: December 20, 2021

/ Paper available online: December 25, 2021 ©

International Journal of Modern Manufacturing

Technologies

